

HABLEMOS DEL MANUAL	
1. ¿Para qué es este manual?	4
2. ¿Es para mí este manual?	4
HABLEMOS DEL INICIO	
3. ¿Cómo uso el análisis de riesgo por rayo?	5
- · · · · ·	6
4. ¿Es seguro el diseño que tenemos?	•
5. ¿Cuáles son las alternativas para el apantallamiento?	7
6. ¿Cómo específico los dps en la subestación eléctrica?	8
7. ¿Cómo protejo los ascensores?	9
HABLEMOS DE LAS LEYES Y NORMAS	
8. ¿Cuáles son los derechos del consumidor?	10
9. ¿Por qué debo cumplir con el RETIE?	10
10. ¿Y las normas técnicas de rayo?	11
10. Ci las normas tecnicas de rayo!	11
HABLEMOS DE LOS COSTOS	
11. ¿Cuánto vale un SIPRA seguro?	13

HABLEMOS DE LOS PRODUCTOS

12. ¿Cuáles materiales necesito?	16
DPS	17
Cimentación	22
Apantallamiento	29
Puesta a tierra	38
Apantallamiento aislado	45
Pararrayos especiales	50
Mida riesgo por rayo	52
13. ¿Dónde puedo comprar?	50
HABLEMOS DE LAS AYUDAS	
14. ¿Dónde encuentro más información?	54
HABLEMOS DE LOS ENTREGABLES	
15. ¡Quiero ver un ejemplo!	6
GLOSARIO	66
SOBRE EL AUTOR	67

¿Has contemplado a un hombre hábil en su trabajo? Delante de reyes es donde él se apostará

Proverbios 22:29 TNM

1. ¿Para qué es este manual?

Dispone al alcance de su mano una guía rápida y básica que presenta de forma sencilla cómo construir RAYO RESISTENTE cualquier edificio estándar con una altura no mayor a cincuenta (50) metros.

Incluye:

Fuentes de información adicional

Compilado de leyes y normas

En resumen, TODO lo que necesita para construir RAYO RESISTENTE.

2. ¿Es para mí este manual?

Si eres...

Constructor de edificios este manual le será muy útil, pues le permitirá conocer diferentes alternativas para construir RAYO RESISTENTE.

Ingeniero electricista a cargo de alguna de estas responsabilidades: análisis de riesgo por rayo, diseño del SIPRA, director de obra, interventor o inspector. Entonces descubrirá la solución a los retos comunes para construir RAYO RESISTENTE.

Técnico constructor de seguro encontrará una herramienta que lo empoderará para tomar sabias decisiones al momento de instalar un SIPRA seguro y confiable.

Si buscas resultados diferentes no hagas siempre lo mismo. Albert Finstein

3. ¿Cómo uso el análisis de riesgo por rayo?

Naturalmente nadie se puede recetar un remedio si desconoce su enfermedad.

Por tanto, antes de diseñar o implementar el SIPRA es necesario conocer los **niveles de riesgo por rayo que no deben superar al nivel permito**:

Riesgo para seres vivos

Debe ser menor a un muerto por cada cien mil rayos.

Riesgo para patrimonio económico

Las pérdidas y/o gastos por daños no deben superar al 1 x 1000 del valor total del proyecto por año (valor de la obra o construcción más el valor de su contenido).

Con esta información puede establecer el nivel de protección de rayo LPL que reduce el riesgo a niveles tolerables, dependiendo de la magnitud de los rayos.

LPL ii : 200 kA LPL iii : 150 kA LPL iii : 100 kA

A continuación, se determinan las **distancias de seguridad que permiten especificar los materiales** del SIPRA.

$$S > k_i \frac{k_c}{k_m} I(m)$$

Distancias de separación S, según NTC 45552-3 6.3 Aislamiento eléctrico del sistema de protección. Así constatará si el **diseño garantiza la seguridad** que exige el riesgo por rayo.

Nota: No incluimos referencias al riesgo para **servicios públicos y patrimonio histórico**.

Recomendado: Análisis de riesgo por rayo **http://goo.gl/22fXTc**

4. ¿Es seguro el diseño que tenemos?

Generalmente ya se cuenta con un diseño del SIPRA. Ahora bien, tiene que validarlo.

En otras palabras **aprobarlo o respaldarlo como seguro y conforme a las normas técnicas de rayo**, ajustándose a las leyes del consumidor.

Especialmente, si tenemos en cuenta que la **garantía legal** ampara al consumidor durante **diez (10) años**.

Además, contar con un diseño seguro le permite responder las siguientes preguntas:

¿Puedo cuantificar materiales y mano de obra? ¿Especifica los detalles de construcción? ¿Asegura el nivel de protección de rayo LPL?

Cuando el diseño no cumple las normas técnicas

Si...

El diseño **NO es seguro** y evidencia graves violaciones de las normas de **ravo**.

Entonces...

Debe **rediseñar o corregir** el diseño para que se ajuste a las normas técnicas de rayo.

5. ¿Cuáles son las alternativas para el apantallamiento?

Estas opciones van dirigidas a **construir edificios sostenibles** que implican ser RAYO RESISTENTE, instalando **SIPRA libre de mantenimiento**.

Además **respetan la belleza del proyecto**, principalmente cuando el arquitecto no está de acuerdo en fijar a las fachadas la instalación derivadora.

A. Cuando la obra no se ha iniciado

En esta etapa del proyecto se puede decidir construir el **SIPRA** desde los cimientos.

Basados en las normas técnicas:

NTC | IEC 4552-3 | 62305-3

Esta es la forma más segura para construir RAYO RESISTENTE.

Asimismo **evita afear las fachadas** con el sistema derivador de rayos.

B. Cuando la estructura está terminada pero en obra negra

En esta etapa se pudiera intentar aprovechar los hierros de la estructura para combinar un SIPRA de cimentación con menos bajantes de rayo o menos anillos del sistema de apantallamiento.

De esta manera se genera un **ahorro significativo, aumentando la seguridad** del edificio.

C. Cuando el edificio va está habitado

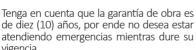
En este caso las alternativas quedan reducidas a instalar un apantallamiento externo usando materiales que se mimeticen en las fachadas.

Por ejemplo, podría usarse alambrón y soportes del color de la fachada, entre otras posibilidades.

Recomendados:

El camino de los rayos http://aoo.al/VZ6e2C "Seguro mato a confianza..." http://goo.gl/VA9WEh

6. ¿Cómo específico los DPS en la subestación eléctrica?


Si el edificio cuenta con un sistema de apantallamiento que conduce la energía del ravo al sistema de puesta a tierra.

Entonces la capacidad del supresor de picos a instalar aguas debajo del breaker totalizador general, será de 100 kA onda 10/350 us.

Además este descargador debe ser Clase 1, según IEC 61643-11.

En segundo lugar, lo más recomendable sería un descargador con fusible integrado libre de mantenimiento.

de diez (10) años, por ende no desea estar atendiendo emergencias mientras dure su vigencia.

Recomendados:

¡Cámbielos! Lo nuevo es mejor... http://goo.gl/g8IFZV NUEVAS TECNOLOGÍAS: DPS + Fusible Integrado http://youtu.be/SkXsCquOqSw ¿Por qué usar DPS? http://youtu.be/43Dq 8keeml

7. ¿Cómo protejo los ascensores?

Recuerde proteger los ascensores porque en caso de impacto directo o indirecto de rayo son los **primeros en fallar**.

Por tanto, debe incluir **por cada ascensor un descargador** con capacidad de protección contra ondas de rayo $10/350 \, \mu s$.

Recomendado:

Ascensores protegidos http://goo.gl/nh7XyH

¿Cómo ser experto al comprar DPS? http://goo.gl/ZdT7NY, http://goo.gl/PnBvX3 ¿Cómo detener los rayos y las sobretensiones? http://goo.gl/LxO22q

La ley es último resultado de la sabiduría humana que opera sobre la humana experiencia para beneficio del público. Ben lonson

8. ¿Cuáles son los derechos del consumidor?

Los derechos del consumidor en **Colombia** y los demás países miembros de la **OMC** amparan el **derecho a un bien inmueble que garantice**:

Ley del Consumidor 1480 DE 2011

Seguridad Idoneidad Calidad

También tiene derecho a una **garantía legal** que comprende la estabilidad de obra por diez (10) años y vida útil del inmueble de veinte (20) años.

Durante este tiempo el **constructor responsable** del bien inmueble está **sujeto a reclamaciones**.

Recomendados:

Pararrayos: ¿quién decide? http://goo.gl/bmzmtM Calidad, Idoneidad y Seguridad de un bien inmueble http://goo.gl/GAKdLI

9. ¿Por qué debo cumplir con el RETIE?

El RETIE, **vigente desde 2005** y actualizado periódicamente, cuenta con un capítulo sobre **protección contra rayos** que hace **obligatorio construir RAYO RESISTENTE**.

Este reglamento está basado en las normas técnicas:

Internaciones: IEC 62305

Nacionales : NTC 4552 - NTC 2050

Además en todos los países miembros de la OMC aplican las normas internacionales:

IEC 62305

Protección contra rayos

IEC 62561

Materiales del apantallamiento

IEC 61643

Dispositivos de protección

10. ¿Y las normas técnicas de rayo?

Norma Colombiana

NTC 4552 -1

"Protección contra descargas eléctricas Atmosféricas (Rayos) – Parte 1: Principios generales"

NTC 4552 -2

"Protección contra descarga eléctricas Atmosféricas (Rayos) – Parte 2: Manejo del Riesgo"

NTC 4552 -3

"Protección contra descarga eléctricas Atmosféricas (Rayos) – Parte 3: Daños físicos a estructuras y amenazas a la vida"

Normas Internacionales

IEC 62305-1

"Protection against lightning – Part 1: General principles"

IEC 62305-2

"Protection against lightning – Part 2: Risk management"

IEC 62305-3

"Protection against lightning – Part 3: Physical damage to structures and life hazard"

IEC 62305-4

"Protection against lightning – Part 3: Electrical and electronic systems within structures"

IEC 61643-1

"Low-voltage surge protective devices – Part 1: Surge protective devices connected to low-voltage power distribution systems – Requirements and tests"

IEC 61643-11

"Low-voltage surge protective devices- Part 11: Surge protective devices connected to low-voltage power systems- Requirements and test methods"

IEC 61643-21

"Low voltage surge protective devices – Part 21: Surge protective devices connected to telecommunications and signalling networks – Performance requirements and testing methods"

IEC 60364-5-53

"Electrical Installations of Buildings- Part 5-53: Selection and Erection of Electrical Equipment- Isolation, Switching and Control"

Por ejemplo, ¿quién de ustedes que quiere edificar una torre no se sienta primero y calcula los gastos?

11. ¿Cuánto vale un SIPRA SEGURO?

El valor de un SIPRA SEGURO es equivalente al valor añadido en la seguridad para el constructor que garantiza el inmueble durante 10 años, más el valor añadido en múltiples beneficios para el usuario final.

Por consiguiente es conveniente que **analice estos beneficios para calcular el costo real** del SIPRA.

Ahorro

En caso de presentarse impactos directos de rayo **los gastos** anuales se reducen:

40 millones, por cada ascensor en mantenimiento

20 millones, en reposición de luminarias

150 SMMLV, en sanciones por no conformidad a leyes y normas técnicas

20 millones, en mantenimiento del SIPRA

Seguridad Es seguro para:

seguio parai

Discapacitados Peatones por tensión de paso y contacto

Personas con marcapasos cardíacos y/o prótesis metálicas en el cuerpo

Todos los equipos electrónicos

Calidad

No afea fachadas exteriores

Estabilidad de la obra **superior a cincuenta (50) años,** inclusive hasta la misma duración de los cimientos del edificio

Idoneidad

350% más seguro que el SIPRA PELIGROSO

Construido con **materiales comprobados** con ondas de rayos (100kA/200 kA, $10/350 \mu s$)

Cumple con las exigencias legales del RETIE 2013

Recomendado por las **normas de rayos**: internacionales IEC 62305 y colombianas NTC 4552

Para facilitar este análisis incluimos una tabla comparativa entre dos alternativas de SIPRA:

Segura Vs. Peligrosa

Recomendados:

¿Cuánto vale un SIPRA seguro? http://goo.ql/bTt4Zv

¿Preferiría vivir en un edificio peligroso? http://goo.gl/n5VPBd

CATEGORÍA	DESCRIPCION	MUY SEGURO	PELIGROSO
MALLA CAPTADORA	Dimensiones	5m x 5m	×
PUNTAS CAPTADORAS	Azotea (0,60 m)	6	4
ONTAS CAFTADONAS	Laterales (0,60 m)	8	×
	Número total	90	4
	Fuera de la estructura	No requiere	*
BAJANTES	Dentro de la estructura no equipotencializados	No requiere	✓
	Dentro de la estructura equipotencializados	✓	×
	Aislado 100 kV (últimos 3,5 metros)	No requiere	NO CUMPLE
ANILLOS	Exteriores	No requiere	No cumple
ANILLOS	Dentro de la estructura	5	No cumple
SISTEMA DE PUESTA	Perimetral exterior	No requiere	No cumple
A TIERRA	De cimentación	✓	No cumple
CERTIFICACIONIES	RETIE dimensión de materiales	Cumple	Cumple
CERTIFICACIONES	Conectores idóneos (IEC 62561)	Cumple	Cumple
	Clase 1 en totalizador (IEC 61643-11)	140 kA 10/350	12,5 kA 10/350
	Acometidas TV	✓	×
PROTECCIÓN	Acometidas telecomunicaciones	✓	×
INTERNA CON DPS	Ascensores	✓	×
	Bombas de agua	✓	×
	Distancia de separación (min - máx.)*	0 - 0	70 cm - 2,8 m
REQUERIMIENTOS	Trabajo en altura	No requiere	No requiere
	Mantenimiento cada (?) meses	No requiere	12
PROTECCIÓN	Pacientes con marcapasos cardiaco	✓	×
PROTECCIÓN	Pacientes con prótesis metálicas	✓	×
CONTRA RIESGO	Transeúntes exteriores al edificio	✓	×
COSTOS	Materiales	\$ 75.000.000	\$ 10.000.000
COSTOS	Mano de obra	\$ 15.000.000	\$ 3.000.000
	Tipo de SIPRA	Cimentación	Aislado
	Nivel de seguridad ofrecido	LPLIX 2	Ni el mínimo
BENEFICIOS	Riesgo resultante seres vivos	0,0000013	0,0004095
	Numero total de habitantes	250	250
	Protección contra rayos laterales	✓	×

^{*} Aplica: Minima, primer piso - Máxima, último piso

Preocúpate por la calidad, mucha gente no está preparada para un entorno donde la excelencia es lo que se espera.

Steve Jobs

12. ¿Cuáles materiales necesito?

Sin lugar a dudas, trabaje con materiales que le ofrezcan **CALIDAD, IDONEIDAD Y SEGURIDAD**.

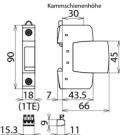
Por lo general estos materiales son **comprobados** con ondas de rayo y sobretensiones.

También son **verificados para ambientes corrosivos** que simulan la exposición al aire libre en condiciones de uso mínimo diez (10) años.

Fusible integrado

— Recomendado —

6 Beneficios descargadores CI http://goo.gl/PTPR9b

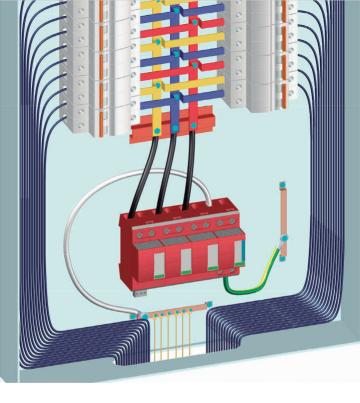

DEHNvenCl

	VPE	
Tipo	Unidad	ArtNr.
DVCI 1 255	1	961 200

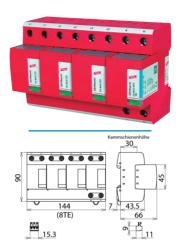
"

Potente descargador, para instalar en el tablero general, que protege contra rayos y sobretensiones transitorias 156,25 kJ/ohms por polo, coordinado según IEC Type 1+ Type 2 + Type 3.

DEHNguard®


Descargador de sobretensiones modular con fusible integrado para sistemas TT y TNS (variante 3+1).

Tipo	DG M TT CI 275	DG M TT CI 275 FM
Máx. tens. permisible de servicio AC [L-N/N-PE] U _C	275 V / 255 V	275 V / 255 V
Corr. nominal de descarga (8/20) [L-N/N-PE] I _n	12,5 kA / 20 kA	12,5 kA / 20 kA
Corriente máx. de descarga (8/20) [L-N/N-PE] I	25 kA / 40 kA	25 kA / 40 kA


	VPE	
Tipo	Unidad	ArtNr.
DG M TT CI 275	1	952 322
DG M TT CI 275 FM	1	952 327

Descargador contra sobretensiones para instalar en tablero de distribución.

DEHNventil®

Descargador combinado modular trifásico para red TT, tensión nominal 230/400 V, 50 Hz.

	Máx. tensión permisible	VPE	
Tipo	de servicio AC	Unidad	ArtNr.
DV M TT 255	255 V	1	951 310
DV M TT 255 FM	255 V	1	951 315

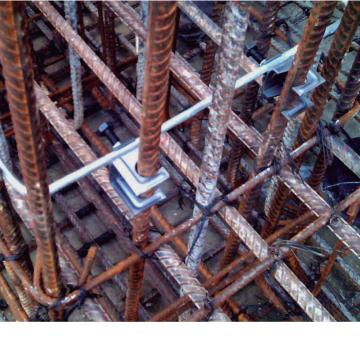
Potente descargador contra rayos y sobretensiones 2.500 kJ/ohms para instalar en el tablero general, coordinado según IEC Type 1+ Type 2 + Type 3.

Beneficios

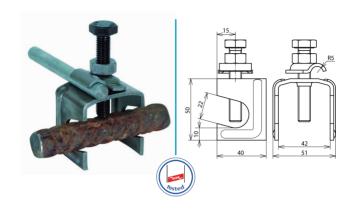
Gastos anuales

CALIDAD Estabilidad de obra

Cumplimiento RETIE & NTC

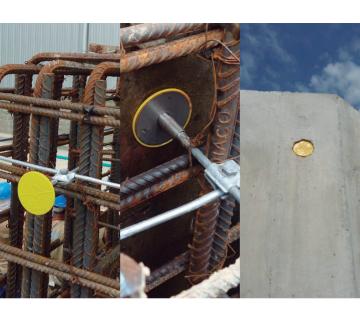


DURABILIDAD


Materiales comprobados

22

Grapa Refuerzos


Grapa Refuerzos Η 50 kA 10/350μs

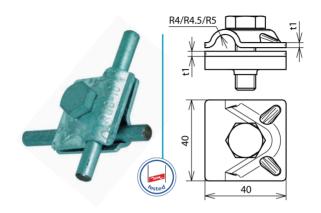
Para conexiones en T y en cruz.

	Margen de apriete	VPE	
Material	Rd / Fl	Unidad	Art. Nr.
St/desnudo	(+) 6-22 / 40 mm	25	308 035

Grapas comprobadas contra rayos, esenciales para construir RAYO RESISTENTE, que garantizan la seguridad del edificio de por vida.

Toma a Tierra

Toma a Tierra


Material	Material	Rosca de	VPE	
placa	eje	conexión	Unidad	Art. Nr.
NIRO (V4A)	St/tZn	M10 / 12	10	478 011
NIRO (V4A)	NIRO (V2A)	M10 / 12	10	478 019

"

Permite que la toma a tierra quede expuesta después de secado el concreto con el fin de realizar mediciones y conexiones para la compensación de potencial.

Grapa multifunción galvanizada

Grapa multifunción galvanizada

Material	Margen de	Espesor del	VPE	
Borna	apriete Rd	material	Unidad	Art. Nr.
St/tZn	8-10 mm	2,5 mm	50	390 050
St/tZn	10 mm	2,5 mm	50	391 050

"

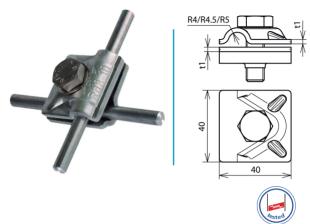
Conecta los hierros de vigas al conductor galvanizado del sistema de apantallamiento en cimentación.

Beneficios

Se mimetiza en la fachada

Costos en materiales

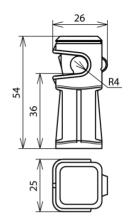
Distancias de seguridad


Tiempo de ejecución

29

Grapa De Alum<u>inio</u>

Grapa De Aluminio


Material	Margen de apriete	Margen de apriete	VPE	
Borna	Rd Cu	Rd Al	Unidad	Art. Nr.
Al	8 mm	8-10 mm	50	390 051

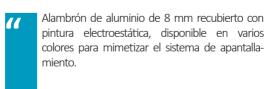
Grapa comprobada para rayos de 100 kA para conexión en cruz y paralelo, resistente a la corrosión. Permite múltiples funciones conectando el sistema captador y derivador.

DEHNsnap®

Para conductor Rd 8 mm. Altura de construcción 36 mm.

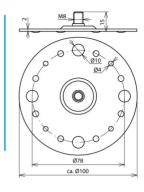
LH	LH	LH	VPE	
Material	Rosca	Color	Unidad	Art. Nr.
Plástico	M6	1	100	204 003
Plástico	M6	1	100	204 027
Plástico	M8	1	50	204 004
Plástico	M8	1	50	204 037

Soporte plástico resistente al clima extremo y rayos ultravioletas para conductor de 8 mm en la instalación captadora y derivadora. Puede instalarse con chazos y/o pernos de anclaje Hilti.



Alambrón aluminio color

Alambrón aluminio color


	Diámetro	Peso por rollo/	
Material	Conductor	long. aprox. por rollo	Art. Nr.
Al	8 mm	50 kg / 127 m	860 926/S

Kit Punta Captadora

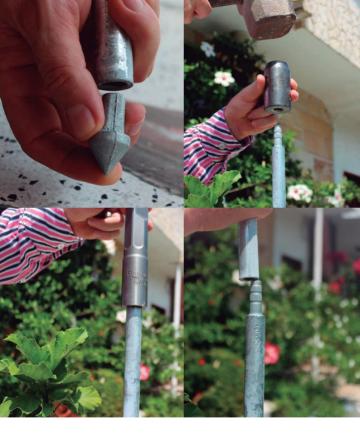
Kit Punta Captadora

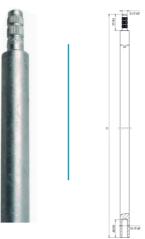
Compuesto por: varilla 16 mm disponible en varias longitudes, base metálica galvanizada con bulbo en acero inoxidable y grapa de conexión punta alambrón.

Material	Margen de	Espesor del	VPE	
Borna	apriete Rd	material	Unidad	Art. Nr.
Al	8-10 mm	L 600 mm	1	483154/S
NIRO (V2A)	8-10 mm	2,5 mm	1	392 060
St/tZn	8-10/16 mm	3,0/2,5 mm	1	297 015

Incluye todos los elementos necesarios en un mismo set, puede ser fijado con tornillos o instalarse con una base de concreto.

Beneficios


Mejora resistencia óhmica

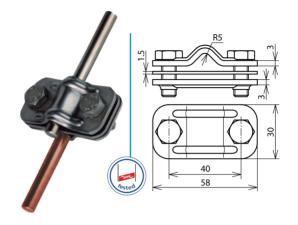

Instalación

Enterramiento más de 9 m

Pica De Profundidad



Pica De Profundidad


Tipo Z, con vástagos moleteados triples (forma de ejecución especialmente resistente a la tracción).

	Longitud		VPE	
Material	pica	Diámetro	Unidad	Art. Nr.
St/tZn	1000 mm	20 mm	10	620 101
St/tZn	1500 mm	20 mm	10	620 151
St/tZn	1000 mm	25 mm	10	625 101
St/tZn	1500 mm	25 mm	10	625 151

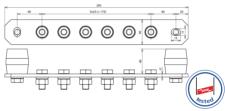
En acero endurecido especial para garantizar que se entierren con un martillo percutor de 20 kilos hasta más de 9 metros de profundidad sin necesidad de excavación.

Grapa Bimetálica

Grapa Bimetálica

Para conductores Cu y conductores St/tZn o NIRO (V4A). Usada en puntos de interconexión del sistema de puesta a tierra con el sistema derivador.

	Margen de apriete	VPE	
Material	Rd / Rd	Unidad	Art. Nr.
Cu / St/tZn	8-10 / 8-10 mm	50	460 517



Grapa con separación galvánica comprobada con 100 kA para unir conductores de 8-10 mm, interconectado cobre con aluminio.

Barraje ,

Barraje

	Dimensiones		VPE	
Material	(l x a x f)	Sección	Unidad	Art. Nr.
Cu	505x40x5 mm	200 mm ²	1	472 227
NIRO (V2A)	295x40x6 mm	240 mm ²	1	472 209

Barra para compensación de potencial en sistemas de toma de tierra, disponible en varias medidas.

Beneficios

Cumplimiento RETIE & NTC

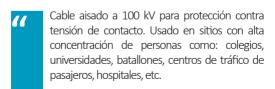
Materiales comprobados

Garantiza continuidad

Cable HVI

Cable HVI Power

		Diámetro		
Material	Peso	Diámetro	de conexión	Art. Nr.
Cu	4,8 kg	27 mm	10 mm	819 137


Cable aislado a 100 kV que permite aumentar las distancias de seguridad hasta 180 centímetros, usado en telecomunicaciones y en sitios con riesgo de explosión.

Cable CUI

Material			Longitud	
Material	Aislamiento	Diámetro	total	Art. Nr.
Cu	vPE	20 mm	5000 mm	830 208

Pararayos Especiales

¡Garantice: Seguridad + Tecnología Avanzada + Efectividad

Pararrayo aislado

Largo	Largo del	Material		
total	tubo soporte	tubo soporte	Unidad	Art. Nr.
4200 mm	3200 mm	1	1	105 440

Mástil aislado para derivar de forma segura el rayo, alejando el punto de impacto del objeto a proteger. Uso generalizado en protección de antenas de telecomunicaciones y tanques con riesgo de explosión.

Beneficiós

Riesgo por rayo

Riesgo a niveles tolerables

Distancias de seguridad

ESPECIFIQUE Materiales del SIPRA

DISMINUYA Tiempo de ejecúción

GARANTICE Seguridad exigida

CTA: Contáctenos dtecnico@electropol.com.co Cel.: 57 313 5009584- 310 6302917

13. ¿Dónde puedo comprar?

Colombia

COLONIDIA	
Armenia	7357576
Barranguilla	3856525
Bogotá	7447844
Bucaramanga	6972466
Buenaventura	2978446
Cali	4850225
Cartagena	6933017
Cúcuta	5955706
Girardot	8886973
Ibagué	2771331
Manizales	8918844
Medellín	6049436
Montería	7894650
Neiva	8631871
Pasto	7374436
Pereira	3401423
Popayán	8368033
Santa Marta	4365080
Sincelejo	2765428
Tunja	7473860
Valledupar	5898494
Villavicencio	6849231
Yopal	6333796

Panamá

Ciudad de Panamá +507 8365052

República Dominicana

Santo Domingo +1 (829)9548292

FLECTROPOL LTDA.

www.electropol.com.co info@electropol.com.co

Línea Nacional: 01 8000 510 161 PBX: 575 3782522- 575 3784079 Cel: 57313 5009584- 57 300 6302917

Carrera 42H N° 87-67 Barranguilla, Colombia

El conocimiento es la mejor inversión que se puede hacer

Abraham Lincoln

14. ¿Dónde encuentro más información?

Catálogos

Descarga los catálogos de productos utilizados por los expertos en protección contra rayos, Hecho en Alemania por la reconocida marca **DEHN & SÖHNE** con más cien (100) años de experiencia.

Español

Externa http://goo.gl/y8EdK4

DPS http://goo.gl/RPhm4q

English

Lightning protection / earthing http://goo.gl/KD3oLK

Surge protection http://goo.gl/6JDQuX

Vídeos

Para ver vídeos instructivos sobre protección contra rayos, puedes acceder a los canales:

youtube.com/viviendoconrayos youtube.com/electropolcolombia

EDIFICIOS PELIGROSOS: Experimento http://youtu.be/RBRGOazpeyg

NUEVAS TECNOLOGÍAS: DPS + Fusible Integrado
http://youtu.be/SkXsCguOgSw

Máquina enderezadora de alambrón https://youtu.be/ftvlxVeef10

DEHN protección externa https://youtu.be/_zCGqCfwBkM

Picas de profundidad https://youtu.be/ooTGeBPdHXs

youtube.com/viviendoconrayos

BLOG

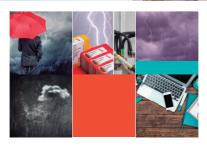
viviendoconrayos.blogspot.com

Actualizate con todas las noticias sobre rayos Whole no serderista alcausado bor nu tako Mentras Usaba Un palo para selfies Proteger nuestra instalación de sobre

epol.co

www.dehn-international.com

más de 100 años de experiencia



www.electropol.com.co/blog/

Una imagen vale más que mil palabras. Anónimo

15. ¡Quiero ver un ejemplo!

¿Cuáles servicios incluye?

Diseño 3D de apantallamiento

Especificación de DPS

¡No hay improvisación: hay procesos de calidad certificados (ISO 9001:2008), profesionales capacitados!

¿Por qué es necesario?

Recibir asesoría especializada garantiza la efectividad de la protección contra rayos, ahorrando tiempo y recursos económicos.

Este es un tema extenso, requiere dedicación y experiencia.

Funciona como los chalecos antibalas: debe funcionar bien cuando vengan los rayos.

¡No hay segunda oportunidad!

Ver:

3. ¿Cómo uso el análisis de riesgo por rayo?

Recomendado:

DEHNsupport: Herramienta optimizada http://goo.gl/qVeOk9

Riesgo

 $R_{\rm T} = 0,00001$ $R_{\rm I} = 0,0000002$ $R_{\rm II} = 0K$

 $R_{\rm A} = OK$

¿ Qué nivel de protección contra rayo debo implementar?

LPL = I(3?)

Componentes del Riesgo

	Impacto de rayo	Estructura		Acometida de servicio	
D A Ñ	Tipos	S ₁	S ₂	S ₃	S ₄
S	Fuentes				"
	Lesión seres vivos (tensiones de paso y contacto)	R _A		R_{U}	
D	Daños físicos a estructura (fuego o explosión)	R_{B}		R_V	
D	Daños Físicos a estructura (fuego o explosión)	R _C	R_{M}	R_{W}	R_{Z}

Riesgo (R)

RT Riesgo tolerable

Riesgo de pérdida

- R1 Vida humana
- R2 Servicio público
- R3 Patrimonio cultural
- R4 Valor económico

Sistemas de contra rayos

GLOSARIO

DPS: Dispositivo de protección contra rayos y sobretensiones

IEC: International Electrotechnical Commission

LPL: Nivel de protección de rayo (Lightning Protection Level)

NTC: Norma Técnica Colombiana

OMC: Organización Mundial del Comercio

RETIE: Reglamento Técnico de Instalaciones Eléctricas

SIPRA: Sistema Integral de Protección contra Rayos

SPT: Sistema de Puesta a Tierra

SOBRE EL AUTOR

Pedro Duran Jaimes

Experto en protección contra rayos y sobretensiones, fundador de ELECTROPOL LTDA., asesor en cientos de proyectos de diseño y consultorías para reconocidas empresas colombianas (ULTRACEM, Fénix Constructores, Grupo GUIAR, Grupo Nutresa, Almacenes ÉXITO, Constructora Colpatria, JOVEGA, Espumados del Litoral, TECNOGLASS, entre otras).

Además su perfil incluye:

Conferencista internacional (Alemania, Brasil, Colombia, México

Miembro activo de ICONTE(

(Participa en el comité técnico 127, 129, 143 y 147)

Columnista de artículos técnicos

Director del canal de YouTube: Viviendo con ravos

Autor del libro: "Viviendo con rayos – Manos a la obra"

Responsable por el soporte técnico DEHN + SÖHNE (Colombia, Costa Rica, Ecuador, Panamá, República Dominicana Panama)

